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Abstract In this paper, some properties of pseudoinvex functions are obtained. We study
the equivalence between different solutions of the vector variational-like inequality problem.
Some relations between vector variational-like inequalities and vector optimization problems
for non-differentiable functions under generalized monotonicity are established.
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1 Introduction

Weir and Mond [23] and Mohan and Neogy [21] have studied some basic properties of the
preinvex functions and their role in optimization. They showed that under certain condition
an invex function defined on an invex set is preinvex and a quasiinvex function defined on
an invex set is prequasiinvex. Jabarootain and Zafarani [16] have devoted to the study of
relationships between several kinds of generalized invexity of locally Lipschitz functions
and generalized monotonicity of corresponding Clarke’s subdifferentials. In particular, some
necessary and sufficient conditions of being a locally Lipschitz function invex, quasiinvex or
pseudoinvex have given in terms of momotonicity, quasimonotonicity and pseudomonoto-
nicity of its Clarke’s subdifferential, respectively. The concept of vector variational inequality
was first introduced and studied by Giannessi [11]. Recently, Giannessi [12] has shown that the
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equivalence between efficient solutions of differentiable, convex optimization problem and
solutions of a variational inequality of Minty type. He also proved the equivalence between
weak efficient solutions of a differentiable convex optimization problem and solutions of a
variational inequality of weak-Minty type.

By using a variational inequality, Yang et al. [28] obtained some results of existence of
solution for non-smooth invex problems, which are generalizations of those obtained in [11]
for differentiable convex problems. Yang et al. in [30] have pointed out that the concept of
invexity plays exactly the same role in variational-like inequality problems as the classical
convexity plays in variational inequality problems. Chen and Yang [4] and Chen [3] studied
different kinds of vector variational inequality problems. Now the study of vector variational
inequalities has become an important research for vector optimization problems. For details
we refer to Daniilidis and Hadjisavvas [7] and [8], Giannessi [12,13] Giannessi and Maugeri
[14], Giannessi and Maugeri [15], Konnov and Yao [18], Yang [24], Yang and Goh [26]. Yang
et al. [29] have obtained some existence result of vector variational inequality problem and
for differentiable non-convex vector optimization problems. In particular, they established
some relations between a Minty vector variational inequality problems and vector optimiza-
tion problems under pseudoconvexity or pseudomonotonicity of function or its differential,
respectively. Lee and Lee [19] have shown vector variational inequality for non-differentiable
convex vector optimization problems. Vector variational-like inequality problems and vector
optimization problems have been studied by Mishra and Wang [20], Fang and Huang [10],
Chiang [5], Santos, Medar and Lizana [22] and [6]. Vector variational-like inequality and
non-smooth vector optimization problems have been studied by Jabarootian and Zafarani [17]
in the case of invex functions. Yang and Yang [31] devoted to the study of vector variational-
like inequality models in the case of differentiable functions. They obtained some important
properties of differentiable pseudoinvex functions and established relations between vector
variational-like inequality problems and vector optimization problems.

In this article, we obtain some important properties of pseudoinvex functions and study
the equivalence between different solutions of the variational-like inequality problems. Fur-
thermore, the relations between vector variational-like inequalities and vector optimization
problems for non-differentiable functions are established. The paper is organized as follows.
In Sects. 1, 2, some basic definitions and preliminary results are given. Some properties of
pseudoinvex and quasiinvex functions are obtained in Sect. 3. The vector variational-like
inequalities and their relations with vector optimization are studied in Sect. 4 and the weak
versions of these results are presented in Sect. 5.

2 Preliminaries

Let X be a real Banach space endowed with a norm ‖.‖ and X∗ its dual space with a norm
‖.‖∗. We denote by 2X∗

and 〈., .〉 the family of all nonempty subsets of X∗ and the dual pair
between X and X∗, respectively. Let K be a X non-empty open subset of X, η : X ×X → X a
vector-valued function. Throughout this paper, fi : K → R the components of f : K → R

n

are non-differentiable locally Lipschitz functions, {C(x) : x ∈ K } is a family of convex and
pointed cones of R

n such that C(x) ⊆ R
n+ \ {0},∀x ∈ K , with intC(x) 	= ∅.

Let C be a closed, convex and pointed cone with intC 	= ∅. In the sequel we adopt the
following ordering relations:

x ≥C y ⇔ x − y ∈ C; x 	≥C y ⇔ x − y 	∈ C;
x >C y ⇔ x − y ∈ intC; x 	>C y ⇔ x − y 	∈ intC.

Note that 0 	∈ intC .
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Let X be a nonempty set, we shall denote by F(X) the family of all nonempty finite subsets
of X . Let Y be a nonempty set, X a topological space and F : Y ⇒ X a set-valued mapping.
Then F is said to be transfer closed-valued iff ∀(y, x) ∈ Y × X with x 	∈ F(y), ∃y′ ∈ Y,

such that x 	∈ clF(y′). It is clear that this definition is equivalent to:
⋂

y∈Y

F(y) =
⋂

y∈Y

clF(y).

If B ⊆ Y and A ⊆ X , then we call F : B ⇒ A transfer closed-valued iff the multi-valued
mapping y → F(y)

⋂
A is transfer closed-valued. When X=Y and A=B, we call F transfer

closed-valued on A. Let K be a convex subset of a vector space X . Then a mapping F : K ⇒
X is called a KKM mapping iff for each nonempty finite subset A of K , convA ⊆ F(A),
where convA denotes the convex hull of A, and F(A) = ∪{F(x) : x ∈ A}.

The following generalized Fan’s KKM theorem is due to Fakhar and Zafarani [9].

Lemma 2.1 [9]. Let K be a nonempty and convex subset of a Hausdorff topological vector
space X. Suppose that �, �̂ : K ⇒ K are two set-valued mappings such that the following
conditions are satisfied:

(A1) �̂(x) ⊆ �(x), ∀x ∈ K ,
(A2) �̂ is a KKM map,
(A3) ∀A ∈ F(K ), � is transfer closed-valued on convA,
(A4) ∀A ∈ F(K ), clK (

⋂
x∈convA �(x)) ∩ convA = (

⋂
x∈convA �(x)) ∩ convA,

(A5) there is a nonempty compact convex set B ⊆ K , such that clK (
⋂

x∈B �(x)) is compact.

Then,
⋂

x∈K �(x) 	= ∅.

Remark 2.1 When � is closed-valued, then conditions (A3)–(A4) are trivially satisfied.

Definition 2.1 A subset K of X is said to be invex with respect to η : X × X → X if , for
any x, y ∈ K and λ ∈ [0, 1], we have y + λη(x, y) ∈ K .

Throughout this paper K stands for an invex subset of X.

Definition 2.2 The Clarke’s generalized derivative of f : K → R at x in direction v ∈ X is
defined by

f o(x; v) = lim sup
y→x λ→0+

f (y + λv) − f (y)

λ
,

and the Clarke’s generalized subdifferential of f at x ∈ X is defined by

∂ f (x) = {ξ ∈ X∗ : 〈ξ, v〉 ≤ f o(x; v), ∀v ∈ X}.
Some important generalizations of convex functions, namely prequasiinvex functions and
pseudoinvex functions were introduced by Weir and Mond [23] and Mohan and Neogy [21]
for differentiable functions and by Jabarootian and Zafarani [16] for locally Lipschitz func-
tions.

Definition 2.3 Let f : K → R. Then

(1) f is said to pseudoinvex with respect to η on K if for any x, y ∈ K and any ζ ∈ ∂ f (y)

one has

〈ζ, η(x, y)〉 ≥ 0 ⇒ f (x) ≥ f (y);
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(2) f is said to strictly pseudoinvex with respect to η on K if for any x, y ∈ K with x 	= y
and any ζ ∈ ∂ f (y) one has

〈ζ, η(x, y)〉 ≥ 0 ⇒ f (x) > f (y);
(3) f is said to be prequasiinvex with respect to η on K if for any x, y ∈ K , 0 ≤ λ ≤ 1,

one has

f (y + λη(x, y)) ≤ max{ f (x), f (y)};
(4) f is said to be semi-strictly prequasiinvex with respect to η on K if for any x, y ∈ K , 0 <

λ < 1 with f (x) 	= f (y), one has

f (y + λη(x, y)) < max{ f (x), f (y)};
(5) f is said to quasiinvex with respect to η on K if for any x, y ∈ K and any ζ ∈ ∂ f (y)

one has

f (x) ≤ f (y) ⇒ 〈ζ, η(x, y)〉 ≤ 0.

In the sequel we need the following notions of monotonicity.

Definition 2.4 Let f : K → R. Then

(1) ∂ f is said to be quasimonotone on K with respect to η if for any x, y ∈ K and any
ξ ∈ ∂ f (x) , ζ ∈ ∂ f (y) one has

〈ξ, η(y, x)〉 > 0 ⇒ 〈ζ, η(x, y)〉 ≤ 0;
(2) ∂ f is said to be pseudomonotone on K with respect to η if for any x, y ∈ K and any

ξ ∈ ∂ f (x), ζ ∈ ∂ f (y) one has

〈ξ, η(y, x)〉 ≥ 0 ⇒ 〈ζ, η(x, y)〉 ≤ 0.

It is trivial that in Definition 2.4, we have the following implications: (2) ⇒ (1).
Mohan and Neogy [21] introduced Condition (C) defined as follows.

Condition (C). Let η : X × X → X. We say the function η satisfies the condition (C) if, for
any x, y ∈ X, λ ∈ [0, 1],

η(y, y + λη(x, y)) = −λη(x, y),

η(x, y + λη(x, y)) = (1 − λ)η(x, y).

Remark 2.2 Yang et al. [30] have shown that when η : X × X → X satisfies Assumption
(C), then

η(y + λη(x, y), y) = λη(x, y), λ ∈ [0, 1].

3 Pseudoinvex and quasiinvex functions

In this section we obtain some relationships between different kinds invexity. We give first a
non-differentiable version of Theorem 2.1 in [31]. Then we complete the implications cycles
in Theorem 4.1 of [16].

Theorem 3.1 Let f : K → R be pseudoinvex with respect to η. Then f is semi-strictly
prequasiinvex function on K .
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Proof With some modifications in the proof of Theorem 2.1 of [31], one can obtain the result.
Hence the proof is omitted. ��

In the following result we obtain a relation between quasiinvex and prequasiinvex func-
tions.

Theorem 3.2 Let f : K → R and η satisfy Condition (C).

(1) If f is quasiinvex with respect to η, then f is prequasiinvex.
(2) Conversely, if f is prequasiinvex and the function y �−→ η(x, y) is continuous, then f

is quasiinvex.

Proof

(1) follows from Theorem 4.1 of [16].
(2) Let x, y ∈ K and f (y) ≤ f (x), then if f (y) < f (x), the result follows from Lemma

4.1 of [16].

If f (y) = f (x), since f is locally Lipschitz, there exists δ > 0 such that f is Lipschitz on
M = {z ∈ K : ‖z − x‖ < δ}. Now, we have two cases;
Case(I): For all z ∈ M , we have f (y)= f (x) ≤ f (z). Then the prequasiinvexity of f implies
that

f (z + λη(y, z)) ≤ f (z), f or‖z − x‖ < δ.

If L is a Lipschitz constant of f near the point x, then for δ>0 small enough, and for
‖z − x‖ < δ, 0 < λ < δ, one has

f (z + λη(y, x)) − f (z)

λ
≤ f (z + λη(y, z)) − f (z)

λ
+ L‖η(y, x) − η(y, z)‖

≤ 0 + L‖η(y, x) − η(y, z)‖.
By continuity of η with respect to the second argument, we have

f o(x, η(y, x)) = lim
δ→0

sup
‖z−x‖<δ,0<λ<δ

f (z + λη(y, x)) − f (z)

λ
≤ 0,

hence for any ξ ∈ ∂ f (x), we obtain 〈ξ, η(y, x)〉 ≤ 0.

Case(II): There exists z ∈ M such that f (z) < f (y) = f (x). Then by continuity of f and
λ �→ x + λη(y, x), there exist λ0 ∈ [0, 1] and z0 = x + λ0η(y, x) ∈ K such that

f (z0) = min
λ∈[0,1] f (x + λη(y, x)).

Since f (z0) < f (x), we have λ0 ∈ (0, 1]. From f (z0) < f (x) and Lemma 4.1 of [16], for
any ξ ∈ ∂ f (x) we deduce

〈ξ, η(z0, x)〉 ≤ 0.

By Condition (C), η(x +λ0η(y, x), x) = λ0η(y, x), hence the above inequality implies that
〈ξ, η(y, x)〉 ≤ 0. Thus, for any ξ ∈ ∂ f (x) we have

〈ξ, η(y, x)〉 ≤ 0,

which completes the proof. ��
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Remark 3.1 When f : K → R with respect to η is pseudoinvex, then by Theorem 3.1 f is
semi-strictly prequasiinvex and hence Theorem 2.2 of [31] implies that f is prequasiinvex.
Therefore, from Theorem 3.2, when η is continuous in the second argument and satisfies
Condition (C), f is quasiinvex. Now from Theorem 4.1 of [16] we deduce that ∂ f is quasi-
monotone.

Theorem 3.3 Let f : K → R be a semi-strictly prequasiinvex function with respect to η on
K and η(x, y) 	= 0 whenever x 	= y. Then every strict local minimizer of the function f is
also a global minimizer.

Proof Suppose that there exists δ > 0 such that f (x0)< f (y) whenever y∈K , ‖y − x0‖ < δ

and there exists z ∈ K , z 	= x0 such that f (z)≤ f (x0). Consider y0 = x0 + λη(z, x0) such
that 0 < λ < min{ δ

‖η(z,x0)‖ , 1}, thus since ‖y0 − x0‖ < δ we deduce

f (x0) < f (y0) (3.1)

and since f is a semi-strictly prequasiinvex function with respect to η on K

f (y0) = f (x0 + λη(z, x0)) < max{ f (x0), f (z)} = f (x0),

which contradicts (3.1). Then x0 ∈ K is a global minimizer f on K . ��
By the same argument as in the above result, we can obtain the following theorem for the

pseudoinvex functions.

Theorem 3.4 Let f : K → R be pseudoinvex with respect to η on K and η(x, y) 	= 0
whenever x 	= y. Then every strict local minimizer of the function f is also a global mini-
mizer.

4 Vector variational-like inequalities

Let f : K −→ R
n be a locally Lipschitz function. We consider the following vector-minimi-

zation problem (VP):

min
x∈K C(y)

f (x).

Solving a (VP) means finding all the (weakly) efficient solutions, which are defined as follows.

Definition 4.1

(1) y ∈ K is said to be an efficient solution (Pareto solution) of (VP) iff

f (y) − f (x) 	∈ C(y),∀x ∈ K

(2) y ∈ K is said to be a weak efficient solution (weak Pareto ) of (VP) iff

f (y) − f (x) 	∈ intC(y),∀x ∈ K .

The definition of Clarke’s generalized derivative can be extended to a locally Lipschitz vec-
tor-valued function f : K −→ R

n . In fact the Clarke’s generalized derivative of f at x in
direction v is

f o(x; v) = f o
1 (x; v) × f o

2 (x; v) × · · · × f o
n (x; v),

and the Clarke’s generalized subdifferential of f at x ∈ X is the set

∂ f (x) = ∂ f1(x) × ∂ f2(x) × · · · × ∂ fn(x).
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Remark 4.1 Similar to the real-valued case, one can show that the set-valued mapping
∂ f : K → X∗n of a function f : K → R

n is (‖.‖ − w∗)-u.s.c. (See; [2]).

We state now a vector version of Definition 2.4.

Definition 4.2 Let f : K → R
n . We say that ∂ f, the Clarke’s generalized subdifferential of

f is:

(1) C-pseudomonotone with respect to η on K whenever, x, y ∈ K

〈∂ f (x), η(y, x)〉 ⊆ C(y) ⇒ 〈∂ f (y), η(x, y)〉 ⊆ −C(y);
(2) C-strictly pseudomonotone with respect to η on K whenever, x, y ∈ K

〈∂ f (x), η(y, x)〉 ⊆ C(y) ⇒ 〈∂ f (y), η(x, y)〉 ⊆ −intC(y);
(3) C-quasimonotone with respect to η on K whenever, x, y ∈ K

〈∂ f (x), η(y, x)〉 ⊆ intC(y) ⇒ 〈∂ f (y), η(x, y)〉 ⊆ −C(y);
(4) C-strictly quasimonotone with respect to η on K whenever, x, y ∈ K

〈∂ f (x), η(y, x)〉 ⊆ intC(y) ⇒ 〈∂ f (y), η(x, y)〉 ⊆ −intC(y);
(5) C-properly quasimonotone with respect to η on K , properly η-quasimonotone of Stam-

pacchia type in the sense of [27], whenever, {x1, x2, . . . , xn} ⊆ K for all y ∈ conv{x1,

x2, . . . , xn}, there exists i ∈ {1, 2, . . . , n} such that

〈∂ f (y), η(xi , y)〉 ⊆ C(y);
(6) C-weakly properly quasimonotone with respect to η on K whenever, {x1, x2, . . . , xn} ⊆

K for all y ∈ conv{x1, x2, . . . , xn}, there exists i ∈ {1, 2, . . . , n} such that

〈∂ f (y), η(xi , y)〉 � −intC(y).

Remark 4.2 In the case that we ordered R
n by the closed convex cone R

n+, and each com-
ponents of f : K −→ R

n is pseudoinvex, η satisfies Condition (C) and the function y �−→
η(x, y) is continuous, then by the same argument as in Remark 3.1, one can show that when f
is pseudoinvex, then ∂ f : K ⇒ X∗n is C-quasimonotone with respect to η on K . In general
we have trivially the following implications:

(2) �⇒ (1)

⇓ ⇓
(4) �⇒ (3).

Moreover, when η is affine in the first argument and η(x, x) = 0, then ∂ f is both C-properly
quasimonotone and C- weakly properly quasimonotone with respect to η. The definition of
properly quasimonotone for set-valued maps with values in the dual of an arbitrary topolog-
ical vector spaces, properly η-quasimonotone of Minty type in the sense of [27], is due to
Daniilidis and Hadjisavvas [8].

We consider now the following Minty vector variation-like inequality (MVLI): Find a y ∈ K
such that

〈∂ f (x), η(x, y)〉 � −C(y), ∀x ∈ K .
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When η(x, y) = y − x and f is differentiable, (MVLI) becomes the following Minty vector
variational inequality (MVLI), which was studied by Giannessi [12]:

Find a y ∈ K such that

〈� f (x), y − x〉 /∈ −C(y), ∀x ∈ K .

Definition 4.3 η : X × X → X is called skew, if η(x, y) + η(y, x) = 0 for each x, y ∈ X.

By using the proof techniques of [19] and [31], we obtain the following result between
relations of (MVLI) and (VP).

Theorem 4.1 If y∈K is a solution of (VP), C = R
n+ and η is skew, then y is a solution of

(MVLI).

Proof Let y be a solution of (VP). By contradiction, suppose that there exists an x0 ∈ K ,

such that

〈∂ f (x0), η(x0, y)〉 ⊆ −C.

Since η is skew, hence

〈∂ f (x0), η(y, x0)〉 ⊆ C.

From the pseudoinvexity of f it follows that

f (y) − f (x0) ∈ C, x0 ∈ K ,

which contradicts the fact that y is a solution of (VP). ��
Here, we consider the Stampacchia vector variational-like inequality (SVLI): Find a y ∈ K

such that

〈∂ f (y), η(x, y)〉 � −C(y), ∀x ∈ K .

Theorem 4.2 Let K be an invex set with respect to a skew function η satisfying Condition
(C) such that ∂ f be C-pseudomonotone with respect to η on K . If y∈K is a solution of
(SVLI), then y is a solution of (MVLI).

Proof Let y∈K be a solution of (SVLI) and by contradiction, suppose that y is not a solution
of (MVLI), thus there exists x0 ∈ K , such that

〈∂ f (x0), η(x0, y)〉 ⊆ −C(y).

Since η is skew, hence

〈∂ f (x0), η(y, x0)〉 ⊆ C(y).

By C-pseudomonotonicity of ∂ f,

〈∂ f (y), η(x0, y)〉 ⊆ −C(y),

thus, y ∈ K is not a solution of (SVLI), which is a contradiction. ��
Theorem 4.3 Let f be quasiinvex with respect to η on K and C = R

n+ \ {0}. If y ∈ K is a
solution of (SVLI), then y ∈ K is a solution of (VP).
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Proof Let y∈K be a solution of (SVLI), by contradiction, suppose that there exist an x0 ∈ K
such that

f (y) − f (x0) ∈ C.

Quasiinvexity of f implies that

〈∂ f (y), η(x0, y)〉 ⊆ −C,

which contradicts the fact that y ∈ K is a solution of (SVLI). ��
Now consider a perturbed vector variational-like inequality (PVLI): Find a y ∈ K for

which there exists t0 ∈ (0, 1) such that

〈∂ f (y + tη(x, y)), η(x, y)〉 	⊆ −C(y), ∀x ∈ K ,∀t ∈ (0, t0].
By using the proof techniques of Theorem 3.2 of [10] and Theorem 3.5 of [31], we obtain
the following result between relations of (MVLI) and (PVLI).

Theorem 4.4 Let K be invex with respect to a function η satisfying Condition (C). If y ∈ K
is a solution of (MVLI), then y is a solution of (PVLI). Conversely, if ∂ f is C-pseudomono-
tone with respect with to η for C = R

n+ \{0} and y is a solution of (PVLI), then y is a solution
of (MVLI).

Proof Let y be a solution of (MVLI). The invexity of K with respect to η implies x(t) :=
y + tη(x, y) ∈ K , for any x ∈ K , t ∈ (0, t0], t0 ∈ (0, 1). It follows that

〈∂ f (y + tη(x, y)), η(y + tη(x, y), y)〉 	⊆ −C(y), ∀t ∈ (0, t0].
Since η(y + tη(x, y), y) = tη(x, y) and t > 0, it follows

〈∂ f (y + tη(x, y)), η(x, y)〉 	⊆ −C(y), ∀t ∈ (0, t0],
that implies (PVLI).

Let y be a solution of (PVLI): Find a y ∈ K for which there exists t0 ∈ (0, 1) such that

〈∂ f (y + tη(x, y)), η(x, y)〉 	⊆ −C, ∀x ∈ K , ∀t ∈ (0, t0].
Now suppose to the contrary that y ∈ K is not a solution of (MVLI). Then there exists an
x0 ∈ K such that

〈∂ f (x0), η(x0, y)〉 ⊆ −C.

The invexity of K respect to η implies x(t): = y+tη(x0, y)∈K ,∀t ∈ (0, t0]. From Condition
C, η(x0, x(t)) = (1 − t)η(x0, y). Thus we have

〈∂ f (x0), η(x0, x(t))〉 ⊆ −C, ∀t ∈ (0, t0].
Since η is a skew function, we have

〈∂ f (x0), η(x(t), x0)〉 ⊆ C, ∀t ∈ (0, t0].
By C-pseudomonotonicity of ∂ f, we deduce that

〈∂ f (x(t)), η(x0, x(t))〉 ⊆ −C.

Since η(x0, y + tη(x0, y)) = (1 − t)η(x0, y), hence

〈∂ f (y + tη(x0, y)), η(x0, y)〉 ⊆ −C, ∀t ∈ (0, t0].
which contradicts the fact y is a solution of (PVLI). ��
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Now we will obtain an existence result for (MVLI).

Theorem 4.5 Let K be a nonempty convex subset of X, f : K −→ R
n and ∂ f be C-pseud-

omonotone and C-properly quasimonotone with respect to η on K . Assume that the following
conditions are satisfied:

(1) The set-valued mapping � : K ⇒ K defined by

�(x) = {y ∈ K : 〈∂ f (x), η(y, x)〉 � C(y)}
is closed valued;

(2) η is skew;
(3) There are a nonempty compact set M ⊂ K and a nonempty compact convex set B ⊂ K

such that for each y ∈ K \ M, there exists x ∈ B such that

〈∂ f (x), η(y, x)〉 ⊆ C(y).

Then (MVLI) has a solution.

Proof Define the set-valued mapping �̂ : K ⇒ K by

�̂(x) := {y ∈ K : 〈∂ f (y), η(x, y)〉 � −C(y)}.
for each x ∈ K . Note that �̂(x) is nonempty for each x ∈ K , since by virtue of condition(2),
it contains x . The proof of theorem is divided into the following steps.
(a) �̂ is a KKM mapping on K . Since if �̂ is not a KKM mapping, then there exists
{x1, x2, . . . , xn} ⊂ K , ti ≥ 0, i = 1, 2, . . . , n with �n

i=1ti = 1 such that y = �n
i=1ti xi /∈

∪n
i=1�̂(xi ). Thus for any i = 1, 2, . . . , n and ζ ∈ ∂ f (y) we have

〈ζ, η(xi , y)〉 ∈ −C(y),

which contradicts the C-proper quasimonotonicity of ∂ f. Hence, �̂ is a KKM mapping.
(b) Since ∂ f is C-pseudomonotone with respect to η on K , we have �̂(x) ⊆ �(x) for each
x ∈ K .

(c) Hence � is also a KKM mapping. Thus all of the conditions of Lemma 2.1 are fulfilled
by mappings �̂ and �. Therefore,

⋂

x∈K

�(x) 	= ∅.

Hence, there exists y ∈ K such that for any ξ ∈ ∂ f (x), we have

〈∂ f (x), η(y, x)〉 � C(y), ∀x ∈ K .

Since η is skew, we obtain

〈∂ f (x), η(x, y)〉 � −C(y), ∀x ∈ K .

Therefore, (MVLI) has a solution. ��
Example 4.1 Let X = R, C(x) = R

3+ \ {0}, K = [−2, 2) and the function f : K → R
3 be

defined as f (x) = ( f1(x), f2(x), f3(x))

f1(x) :=
{ 1

2 x if x ≥ 0,

0 if x < 0,
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f2(x) :=
{

x if x ≥ 0,

0 if x < 0.

f3(x) :=
{ 1

3 x3 if x ≥ 0,

0 if x < 0.

The Clarke subdifferential mapping of f is

∂ f (x) :=
⎧
⎨

⎩

( 1
2 , 1, x2) if x > 0,

{(t, l, 0) : t ∈ [0, 1
2 ], l ∈ [0, 1]} if x = 0,

(0, 0, 0) if x < 0.

Let η : X × X → X be defined as η(x, y) := α(x − y), such that 0 < α < 1. Then, η is
affine and continuous in the both arguments and skew,

〈∂ f (x), η(y, x)〉 =
⎧
⎨

⎩

{( α(y−x)
2 , α(y − x), αx2(y − x))} if x > 0,

{(αt y, αly, 0) : 0 ≤ t ≤ 1
2 , l ∈ [0, 1]} if x = 0,

{(0, 0, 0))} if x < 0.

and

〈∂ f (y), η(x, y)〉 =
⎧
⎨

⎩

{( α(x−y)
2 , α(x − y), αy2(x − y))} if y > 0,

{(αt x, αlx, 0) : 0 ≤ t ≤ 1
2 , l ∈ [0, 1]} if y = 0,

{(0, 0, 0)} if y < 0.

There are a nonempty compact set M = [−2, 0] and a nonempty compact convex set B =
{0} ⊂ K such that for each y ∈ K \ M, there exists x = 0 ∈ B such that

〈∂ f (0), η(y, 0)〉 = {(αt y, αly, 0)} ⊆ C(y).

Furthermore, ∂ f is C-pseudomonotone and C-properly quasimonotone with respect to η on
K . Therefore, by Theorem 4.5, y = 0 is a solution of (MVLI).

5 Weak vector variational-like inequalities

In this section, we consider the Stampacchia weak vector variational-like inequality (SWVLI):
Find a y ∈ K such that

〈∂ f (y), η(x, y)〉 	⊆ −intC(y), ∀x ∈ K .

The Minty weak vector variational-like inequality (MWVLI): Find a y ∈ K such that

〈∂ f (x), η(y, x)〉 	⊆ intC(y), ∀x ∈ K .

Theorem 5.1 Let − f is quasiinvex function with respect to skew function η on K and
C = R

n+ \ {0}. If y is a solution of (MVLI), then y is a solution of (SWVLI).

Proof Let y ∈ K be a solution of (MVLI), thus

〈∂ f (x), η(x, y)〉 	⊆ −C,

since η is skew

〈∂ f (x),−η(y, x)〉 = 〈∂(− f )(x), η(y, x)〉 	⊆ −C.
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Theorem 4.1 of [16] implies that ∂(− f ) = −∂ f is C-quasimonotone with respect to η on
K , hence

〈∂(− f )(y), η(x, y)〉 	⊆ intC.

Therefore, 〈∂ f (y), η(x, y)〉 	⊆ −intC, thus y ∈ K is a solution of (SWVLI). ��
Theorem 5.2 Let f : K → R

n be pseudoinvex with respect to η satisfying Condition (C),
the function y �→ η(x, y) be continuous and C = R

n+ \ {0}. If y ∈ K is a weak solution of
(VP), then y ∈ K is a solution of (SWVLI).

Proof Let y be a weak solution of (VP). For each x∈K , t ∈ [0, 1], since K is invex with
respect to η, x(t) := y + tη(x, y) ∈ K , thus there exists i ∈ {1, 2, . . . , n} such that fi (y) ≤
fi (x(t)). By the proof of part (2) of Theorem 3.2, for each ζt ∈ ∂ fi (x(t)) we have

〈ζt , η(y, x(t))〉 ≤ 0.

From Condition (C), we have η(y, x(t)) = −tη(x, y), hence

−t (〈ζt , η(x, y)〉) ≤ 0,

and therefore,

〈ζt , η(x, y)〉 ≥ 0.

Since ∂ fi is locally bounded at y, hence, there exists a neighborhood of y and a constant
k > 0 such that for each z in this neighborhood and ξ ∈ ∂ fi (z) we have ‖ξ‖ ≤ k. Since
x(t) → y when t → 0+, thus for t > 0 small enough ‖ζt‖ ≤ k. Without loss of generality,
we may assume that ζt → ζ ′

i in w*-topology. Since the set-valued mapping z �→ ∂ fi (z) has
a closed graph, thus for each x ∈ K there exists ζ ′

i ∈ ∂ fi (y) such that

〈ζ ′
i , η(x, y)〉 ≥ 0.

Hence,

〈∂ f (y), η(x, y)〉 � −intC,

which shows that y is a solution of (SWVLI). ��
Theorem 5.3 Let K be an invex set with respect to η satisfying Condition (C), the function
y �→ η(x, y) be continuous, C = R

n \ {0} and f be a pseudoinvex function on K . If y is a
solution of (SVLI), then y ∈ K is a weak solution of (VP).

Proof By contradiction, suppose that there exists an x0 such that

f (y) − f (x0) ∈ intC.

Clearly, by part (2) of Theorem (3.2) for any ζ ∈ ∂ f (y) we have

〈ζ, η(x0, y)〉 ≤ 0.

Thus

〈∂ f (y), η(x0, y)〉 ⊆ −C.

which is a contradiction to the fact that y is a solution of (SVLI). ��
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Theorem 5.4 Let f : K → R
n be strictly pseudoinvex with respect to η and C = R

n \ {0}.
If y ∈ K is a solution of (SWVLI), then y is a solution of (MWVLI). Conversely, assume
that η satisfies Condition (C). If y ∈ K is a solution of (MWVLI), then y is a solution of
(SWVLI).

Proof Suppose that y ∈ K is a solution of (SWVLI), but not a solution of (MWVLI). Then,
there exists x0 ∈ K such that

〈∂ f (x0), η(y, x0)〉 ⊆ intC.

Since by Lemma 5.1 of [16], ∂ f is C- strictly pseudomonotone, we have

〈∂ f (y), η(x0, y)〉 ⊆ −intC,

that is

〈ζ, η(x0, y)〉 ∈ −intC, ∀ζ ∈ ∂ f (y).

which contradicts the fact y is a solution of (SWVLI).
Now, let y ∈ K be a solution of (MWVLI). Consider any x ∈ K and any t ∈ (0, 1], since

K is invex with respect to η, x(t) := y + tη(x, y) ∈ K . As y ∈ K is a solution of (MWVLI),
there exists ζt ∈ ∂ f (x(t)) such that

〈ζt , η(y, x(t))〉 	∈ intC.

By Condition (C), η(y, x(t)) = −tη(x, y), we have

−t (〈ζt , η(x, y)〉) 	∈ intC.

We note that R
n \ intC(y) is a closed cone, therefore, we have

〈ζt , η(x, y)〉 	∈ −intC.

Since ∂ f is locally bounded at y, hence, there exists a neighborhood of y and a constant k>0
such that for each z in this neighborhood and ξ ∈ ∂ f (z) we have ‖ξ‖ ≤ k. Since x(t) → y
when t → 0+, thus for t > 0 small enough, ‖ζt‖ ≤ k. Without loss of generality, we may
assume that ζt → ξ in w*-topology. Since the set-valued mapping z �→ ∂ f (z) has a closed
graph, thus for each x ∈ K there exists ζ ∈ ∂ f (y) such that

〈ζ, η(x, y)〉 	∈ −intC.

Hence, y ∈ K is a solution of (SWVLI). ��
Theorem 5.5 Let K be a nonempty convex subset of X, f : K −→ R

n and ∂ f be C-quasi-
monotone and C-properly quasimonotone. Assume that the following conditions are satisfied:

(1) η is continuous in the first argument.
(2) There are a nonempty compact set M ⊂ K , and a nonempty compact convex set B ⊂ K

such that for each y ∈ K \ M, there exists x ∈ B such that

〈∂ f (x), η(y, x)〉 ⊆ intC(y).

(3) The set-valued mapping W : K ⇒ R
n defined by W (y) = R

n \ intC(y) has closed
graph.

Then (MWVLI) has a solution.
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Proof Define the set-valued mappings �, �̂ : K ⇒ K by

�(x) = {y ∈ K : 〈∂ f (x), η(y, x)〉 	⊆ intC(y)},
�̂(x) := {y ∈ K : 〈∂ f (y), η(x, y)〉 	⊆ −C(y)}

for each x∈K . Note that �(x) and �̂(x) are nonempty for each x∈K , since by virtue of
condition(1) they contain x . The proof of theorem is divided into the following four steps.

(a) By the same argument as that of the first part of the proof of Theorem 4.5, �̂ is a KKM
mapping on K .

(b) By virtue of C-quasimonotonicity of f, �̂(x) ⊆ �(x) for each x∈K .

(c) � is closed valued. Let {xn} be a sequence in �(x) which converges to x0∈K . Since
xn ∈ �(x) there exists ξn ∈ ∂ f (x) satisfying

zn = 〈ξn, η(xn, x)〉 /∈ intC(xn).

Therefore, zn ∈ W (xn) and hence (xn, zn) ∈ Gr (W ). Since ∂ f (x) is w*-compact, {ξn}
has a convergent subnet in ∂ f (y). Let {ξm} be such a subnet of {ξn} that w*-converges
to ξ0 ∈ ∂ f (x). By continuity of η, {η(xm, x)} is a convergent net. Hence, it is norm
bounded for m ≥ m0 and therefore, by Proposition 2.3 of [5], we have

z0 = lim
m

zm = 〈ξ0, η(x0, x)〉.
Since Gr (W ) is closed, then (x0, z0) ∈ Gr (W ) and hence,

〈ξ0, η(x0, x)〉 /∈ intC(x0).

Thus, x0 ∈ �(x), this means that �(x) is closed.
(d) Thus all of the conditions of Lemma 2.1 are fulfilled by mappings � and �̂. Hence,

⋂

x∈K

�(x) 	= ∅.

Therefore, there exists y ∈ K such that

〈∂ f (x), η(y, x)〉 	⊆ intC(y), ∀x ∈ K .

Thus (MWVLI) has a solution. ��
Remark 5.1 When each of the components of f is quasiinvex, then by Theorem 4.1 of [16],
∂ f is C-quasimonotone for C = R

n+ \{0}. Hence, from Theorem 5.5 we can obtain a solution
of (MWVLI) in this case.

As a consequence of Theorems 5.4 and 5.5, we obtain an existence result for weak (VP).

Corollary 5.1 In Theorem 5.5, if C = R
n+ \ {0} and f is strictly pseudoinvex with respect

to η satisfying Condition (C), then the weak (VP) has a solution.

Proof From Lemma 5.1 in [16] ∂ f is strictly pseudomonotone and therefore it is quasimono-
tone. Hence, Theorem 5.5 implies that (MWVLI) has a solution y ∈ K and from Theorem
5.4, y is a solution of (SWVLI). Now if y is not a weak solution of (VP), then there exists an
x0 ∈ K such that

f (y) − f (x0) ∈ intC.
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From strict pseudoinvexity of f, we have

〈∂ f (y), η(x0, y)〉 ⊆ −intC,

which contradicts with the fact that y is a solution of (SWVLI). ��
Example 5.1 Let X = R, K = [−2, 2), C(x) = R+ \ {0} for each x ∈ K and the function
f : K → R be defined as f (x) = √|x |. The Clarke subdifferential mapping of the function
f is

∂ f (x) :=

⎧
⎪⎨

⎪⎩

1
2
√

x
if x > 0,

(−∞,+∞) if x = 0,
−1

2
√−x

if x < 0.

The function η : X × X → X is defined as

η(x, y) :=
{

x − y if x ≥ 0, y ≥ 0 or x ≤ 0, y ≤ 0,

−y if x ≤ 0, y > 0 or x > 0, y ≤ 0.

The function η is continuous in the first argument and satisfies Condition (C) [25].

〈∂ f (y), η(x, y)〉 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ (x−y)
2
√

y } if x ≥ 0, y > 0,

{ (y−x)

2
√−y

} if x ≤ 0, y < 0,

{ y
2
√−y

} if x ≥ 0, y < 0,

{ −y
2
√

y } if x ≤ 0, y > 0,

{t x : t ∈ R} if x ≥ 0, y = 0,

{0} if x < 0, y = 0.

and

〈∂ f (x), η(y, x)〉 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ (y−x)

2
√

x
} if x > 0, y > 0,

{ (x−y)

2
√−x

} if x < 0, y < 0,

{ x
2
√−x

} if x < 0, y ≥ 0,

{ −x
2
√

x
} if x > 0, y ≤ 0,

{t y : t ∈ R} if x = 0, y > 0,

{0} if x = 0, y < 0.

There are a nonempty compact set M = [−2, 1] and a nonempty compact convex set
B = {1} ⊂ K such that for each y∈K \ M, there exists x = 1 ∈ B such that

〈∂ f (1), η(y, 1)〉 = { y − 1

2
} ⊆ intC(y).

Moreover ∂ f is C-properly quasimonotone. Now by Theorem 5.5, y = 0 is a solution
of (SWVLI). The function f is strictly pseudoinvex, since for every x, y ∈ K , x 	=y and
y∗ ∈ ∂ f (y)

〈y∗, η(x, y)〉 ≥ 0 ⇒ f (x) > f (y).

Therefore, by Corollary 5.1, the weak (VP) has y = 0 as a solution.

We state and prove now the following generalized vector version of Minty’s lemma.

Lemma 5.1 Let K be convex subset of X and ∂ f be C-strictly quasimonotone. Assume that
the following conditions are satisfied:
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(1) η is affine in the first argument and continuous in the second argument .

(2) For all x ∈ K , η(x, x) = 0.

Then, (SWVLI) and (MWVLI) are equivalent.

Proof Suppose that y ∈ K is solution of (SWVLI), thus

〈∂ f (y), η(x, y)〉 	⊆ −intC(y), ∀x ∈ K .

Since ∂ f is C- strictly quasimonotone ,

〈∂ f (x), η(y, x)〉 	⊆ intC(y), ∀x ∈ K .

Therefore, y is a solution of (MWVLI).
Conversely, suppose that we can find y ∈ K such that

〈∂ f (x), η(y, x)〉 	⊆ intC(y)∀x ∈ K . (5.1)

We consider xt = y + t (x − y) for t ∈ (0, 1) and replacing x by xt in (4.1), then

〈∂ f (xt ), η(y, xt )〉 � intC(y). (5.2)

By virtue of conditions (1) and (2), we obtain for each ξt ∈ ∂ f (xt )

0 = 〈ξt , η(xt , xt )〉 = t〈ξt , η(x, xt )〉 + (1 − t)〈ξt , η(y, xt )〉. (5.3)

Hence, from (5.2) and (5.3), we deduce that

〈∂ f (xt ), η(x, xt )〉 � −intC(y).

Consequently for each t ∈ [0, 1], there exists ζt ∈ ∂ f (xt ) such that

〈ζt , η(x, xt )〉 /∈ −intC(y).

Since η is continuous in the second argument, as t → 0+, we have η(x, xt ) → η(x, y)

and the set {η(x, xt ) : t ∈ [0, 1]} is bounded for small enough t . Furthermore, since ∂ f is
norm-w* u.s.c. and w*-compact valued, there exists a ζ ∈ ∂ f (y) and a subnet {ζs} of {ζt }
such that ζs converges to ζ in w*-topology of X∗n . Thus Proposition 2.3 of [5] implies that

〈ζs, η(x, xs)〉 → 〈ζ, η(x, y)〉.
But, 〈ζs, η(x, xs)〉 ∈ R

n \ −intC(y), which is a closed set, hence 〈ζ, η(x, y)〉 ∈ R
n \

−intC(y). Therefore, y is a solution of (SWVLI). ��
Remark 5.2 In the case that ∂ f is C-strictly quasimonotone and η is continuous, affine in the
first argument and η(x, x) = 0 for all x ∈ K , then by Lemma 5.1 and from Theorem 5.5 we
obtain a solution for (SWVLI). When the function f is invex, Jabarootian and Zafarani[17]
obtained a necessary and sufficient condition for the coincidence between weak solution of
(VP) and solution of (MWVLI). In finite dimensional case, a similar result has been obtained
by Ansari and Yao [1].

When ∂ f is only C-weakly properly quasimonotone, we can obtain the following existence
result for (SWVLI).

Theorem 5.6 Let K be a nonempty closed convex subset of a separable Banach space X
and f : K → R

n . Assume that ∂ f is C-weakly properly quasimonotone and the following
conditions are satisfied:
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(1) η is continuous in the second argument.
(2) There are a nonempty compact set M ⊂ K , and a nonempty compact convex set B ⊂ K

such that for each y ∈ K \ M, there exists x ∈ B such that

〈∂ f (y), η(x, y)〉 ⊆ −intC(y).

(3) The set-valued mapping W : K ⇒ R
n defined by W (y) = R

n \ −intC(y) has closed
graph.

Then (SWVLI) has a solution.

Proof Define the set-valued mappings � = �̂ : K ⇒ K by

�(x) := {y ∈ K : 〈∂ f (y), η(x, y)〉 	⊆ −intC(y)},
for each x ∈ K . By the same argument as that of the first part of the proof of Theorem 4.5,
� is a KKM mapping.

Next we prov e that �(x) is closed for each x ∈ K . Let {ym} be a sequence of �(x) which
converges to some y ∈ K . Then there exists ζ i

m ∈ ∂ fi (ym), i = 1, . . . , n, such that

(〈ζ 1
m, η(x, ym)〉, . . . , 〈ζ n

m, η(x, ym)〉 ∈ W (ym). (5.4)

Since fi is locally Lipschitz, there exists a neighborhood N (y) of y and L > 0 such that for
any u, v ∈ N (y),

| fi (u) − fi (v)| ≤ L‖u − v‖, i = 1, . . . , n.

Hence for any u ∈ N (y) and any ζ i ∈ ∂ fi (u), we have ‖ζ i‖ ≤ L . So by w*-metrizability of
the unit ball of X∗n we can assume that ζ i

m w*-converges to ζ i for each i = 1, . . . , n. Since
the set-valued mapping u �→ ∂ fi (u) is closed and ζ i

m ∈ ∂ fi (ym), hence ζ i ∈ ∂ fi (y), i =
1, . . . , n. As η is continuous in the second argument and η(x, ym) converges to η(x, y),

therefore 〈ζ i
m, η(x, ym)〉 converges to 〈ζ i , η(x, y)〉 by Proposition 2.3 of [5]. From (5.4) and

closedness of the graph of W,

(〈ζ 1, η(x, y)〉, . . . , 〈ζ n, η(x, y)〉 ∈ W (y) = R
n \ −intC(y).

Thus y ∈ �(x) and hence is closed.
Now Lemma 2.1 implies that, ∩x∈K �(x) 	= ∅. Hence any point y in this intersection is a

solution of (SWVLI). ��

Corollary 5.2 In Theorem 5.6, if C = R
n+ \ {0} and f is pseudoinvex, then the weak (VP)

has a solution.

Proof Suppose that y ∈ K is a solution of (SWVLI) and is not a weak solution of (VP).
Hence, there exists an x0 ∈ K such that

f (y) − f (x0) ∈ intC.

From pseudoinvexity of f, we have

〈∂ f (y), η(x0, y)〉 ⊆ −intC,

which contradicts with the fact that y is a solution of (SWVLI). ��
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Example 5.2 Let X = R, C(x) = R
2+\{0} for each x ∈ K , K = [−4, 4) and η : X×X → X

be defined as η(x, y) = α(x − y) for each x, y ∈ K such that 0 < α < 1. The function η is
affine and continuous in both arguments and η(x, x) = 0, for each x ∈ K . If f : K → R

2

be defined as f (x) = ( f1(x), f2(x))

f1(x) :=
{√

x if x ≥ 0,

0 if x < 0.

and

f2(x) :=
{

x if x ≥ 0,

0 if x < 0,

then

∂ f (x) =
⎧
⎨

⎩

( 1
2
√

x
, 1) if x > 0,

{(t, l) : t ≥ 0, l ∈ [0, 1]} if x = 0,

(0, 0) if x < 0.

Furthermore,

〈∂ f (x), η(y, x)〉 =

⎧
⎪⎨

⎪⎩

{( α(y−x)

2
√

x
, α(y − x))} if x > 0,

{(αt y, αly) : t ≥ 0, l ∈ [0, 1]} if x = 0,

{(0, 0} if x < 0.

and

〈∂ f (y), η(x, y)〉 =

⎧
⎪⎨

⎪⎩

{( α(x−y)
2
√

y , α(x − y))} if y > 0,

{(αt x, αlx) : t ≥ 0, l ∈ [0, 1]} if y = 0,

{(0, 0)} if y < 0.

One can show that ∂ f is C-weakly properly quasimonotone. Moreover, there are a nonempty
compact set M = [−4, 0] and a nonempty compact convex set B = {0} ⊂ K such that for
each y ∈ K \ M, there exists x = 0 ∈ B such that

〈∂ f (y), η(0, y)〉 = {(−αy

2
√

y
,−αy)} ⊆ −intC(y).

Hence, Theorem 5.6 implies that y = 0 is a solution of (SWVLI). If

〈∂ f (x), η(y, x)〉 ⊆ intC(y)

then,

〈∂ f (y), η(x, y)〉 ⊆ −intC(y),

therefore, ∂ f is C-strictly quasimonotone with respect to η on K . Since η is continuous by
Lemma 5.1, y = 0 is also a solution for (MWVLI). Now as f is pseudoinvex, Corollary 5.2
implies that the weak (VP) has y = 0 as a solution.

6 Conclusion

Giannessi [12] has shown that the equivalence between efficient solutions of differentiable
convex optimization problem and solutions of a variational inequality of Minty type. Yang and
Yang [31] have established the relations between vector variational-like inequality problems
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and vector optimization problems for differentiable pseudoinvex and quasiinvex functions.
Here, we show that similar relations between solutions of vector variational-like inequali-
ties and solutions of vector optimization problems for non-differentiable pseudoinvex and
quasiinvex functions also hold.
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